Some Prime Numbers of the Forms
 $2 A 3^{n}+1$ and $2 A 3^{n}-1$

By H. C. Williams and C. R. Zarnke

> Abstract. All primes of the form $2 A 3^{n}+1$ and of the form $2 A 3^{n}-1$, where $1 \leqq A \leqq 50$ and $1 \leqq n \leqq 325$, are found. Some large twin primes are also determined.

1. Introduction. Robinson [2] has given a table of primes of the form $k 2^{n}+1$ and Williams and Zarnke [3] and Riesel [1] have given tables of primes of the form $k 2^{n}-1$. By comparing these tables, it is possible to determine some large twin primes, namely $9 \cdot 2^{211} \pm 1$ and $45 \cdot 2^{189} \pm 1$. The purpose of this paper is to present a table of all primes of the form $2 A 3^{n}+1$ and a table of all primes of the form $2 A 3^{n}-1$ for $1 \leqq A \leqq 50$ and $1 \leqq n \leqq 325$. By comparing these two tables, we also find some large twin primes.
2. The Algorithm. The following theorem was used to test the primality of integers of the form $2 A 3^{n} \pm 1$.

Theorem. Let $N=2 A 3^{n} \pm 1$, where $(A, 3)=1,1 \leqq A \leqq 3^{n}$. Let q be a prime $(\equiv 1(\bmod 3))$ such that $N^{(a-1) / 3} \not \equiv 1(\bmod q)$ and let $4 q=r^{2}+27 s^{2}$, where $r \equiv 1(\bmod 3)$. If $(q s, N)=1, N$ is a prime if and only if

$$
P_{n} \equiv \pm 1 \quad(\bmod N)
$$

where

$$
P_{1} \equiv K^{A} V_{2 A} \quad(\bmod N)
$$

and

$$
P_{k+1} \equiv P_{k}\left(P_{k}^{2}-3\right) \quad(\bmod N)
$$

Here K is an integer such that $K q \equiv 1(\bmod N)$ and $V_{2 A}=\alpha^{2 A}+\beta^{2 A}$, where α, β are the zeros of $x^{2}+r x+q$.

A proof of this theorem for integers of the form $2 A 3^{n}-1$ is given in Williams [4]. By using methods similar to those in [4], it is not difficult to demonstrate that the theorem is also true for integers of the form $2 A 3^{n}+1$. This theorem can also be generalized for integers of the form $2 A p^{n} \pm 1$, where p is any odd prime (see Williams [5]).

The above theorem was used to construct an algorithm (see [4]) which was programmed for an IBM/360-65 computer. The results of running this program are given in Table 1 and Table 2. The computer required about five hours of CPU time to complete all the calculations.

Table 1. Table of Primes of the Form $2 A 3^{n}+1$

2 A	$\mathrm{n}(1 \leq \mathrm{n} \leq 325)$
2	$1,2,4,5,6,9,16,17,30,54,57,60,65,132,180,320$
4	1,2,3,6,14,15,39,201,249
8	$2,7,8,10,22,52,58,76,130,143$
10	$1,3,4,7,9,12,18,22,102,112,157,162,289$
14	$1,2,3,18,22,26,27,33,39,57,62,94,145,246$
16	3,4,5,12,24,36,77,195,296,297
20	$1,2,3,4,5,8,16,19,28,50,134,280$
22	$1,2,4,5,10,12,14,24,34,37,52,56,65,68,96,106,128,156,169,236,254$
26	$1,12,15,17,20,29,31,32,35,37,77,95,193,203,224,296$
28	$3,4,8,11,14,15,18$
32	$1,4,8,9,32,36,48,74,112,186,204$
34	$1,2,3,5,11,15,19,25,46,65,83,85,145,211$
38	4,19,115
40	$5,7,15,17,18,27,29,30,33,35,53,54,59,60,150,203,229$
44	2,6,9,10,90,194
46	1,4,12,39,220
50	$1,4,6,8,20,38,46,49,59,60,95,148,168,308$
52	1,5,17,22,37,73,96,113,205,245
56	9,20,21,45,53,59,68,113,135,168, 255, 299, 308
58	$2,3,6,15,18,32,35,36,52,172,224,255,296,303$
62	4,9,40,184,297
64	$1,2,7,11,13,31,41,61,121,127,157,167,181,203,229,278$
68	$2,24,26,30,31,32,42,54,72,119$
70	$1,2,5,6,8,9,12,15,19,20,21,25,39,44,49,52,55,69,85,94,115,162,195$,
74	$1,3,7,50,70,115,202$ 222,225,271
76	1,3,11,19,52,59, 88, 103,121,139,189,268
80	$1,3,4,5,6,10,21,35,54,71,90,202,306$
82	$2,5,6,9,17,21,26,29,32,90,138,180,278,290$
86	$4,5,17,27,39,48,57,60,65,68,116,128,132,165,208$
88	3,4,6,16,34, 43,67
92	$1,2,8,12,14,36,46,54,58,62,74,85,94,118,169,182,186$
94	$1,3,53,55,83,99,113,114,154,186,223$
98	$2,3,6,11,16,19,22,66,103,111,123,151,239$
100	$4,6,9,10,11,14,22,24,28,64,69,70,105,117,161,236,323$

Table 2. Table of Primes of the Form $2 A 3^{n}-1$

2A	$\mathrm{n}(1 \leq \mathrm{n} \leq 325)$
2	$1,2.3,7,8,12,20,23,27,35,56,62,68,131,222$
4	$1,3,5,7,15,45,95,235$
8	1,2,4,10, 17, 50, $170,184,194,209$
10	$1,2,3,4,8,10,14,20,22,26,30,38,39,49,54,58,70,81,84,87,102,111,140$,
14	$1,11,16,80,83,88,136,187159,207,224$
16	$1,3,9,13,31,43,81,121,235$
20	$1,2,4,10,11,17,19,24,32,35,37,60,80,114,140,314$
22	2,3,8,14,23,32,167
26	$2,3,5,9,15,17,39,45,50,53,93,122,165$
28	$1,2,4,5,6,8,12,18,24,49,64,76,110,125,138,168,237$
32	3,4,6,46,59, 84,94,124,239,267
34	1,4,7,24,107,168,248
38	$1,6,8,9,14,16,25,28,30,56,64,105,156,168,169,325$
40	$2,5,10,14,16,40,56,70,95,242$
44	$1,3,5,8,9,11,81,108,188,308,313$
46	$1,5,6,10,13,46,54,58,65,71,78,93,127,151,161,187,193,246$
50	$1,2,4,5,9,13,15,17,23,58,65,119,244,292,323$
52	$2,4,6,7,8,10,19,20,30,46,60,74,98,122,138,142,158$
56	$1,2,3,6,7,18,19,22,37,38,54,89,98,106,151,177,229,234,241$
58	$1,2,6,12,17,41,48,56,96,116,140,312$
62	$2,4,6,7,11,24,43,46,52,92,103,215,224$
64	1,5,7,67,295,325
68	4,9,10,12, $30,46,102,108,153,177,297$
70	$3,4,7,12,24,25,27,35,45,57,144,160,179,180,183,212,223$
74	3,5,9,15,21,63,119
76	1,2,10,66,91,127,139,222
80	$1,2,7,12,13,15,20,45,72,75,82,102,126,216,277,282,321$
82	$3,8,11,16,18,20,26,35,59,170,179$
86	$1,2,5,9,11,21,30,35,45,66,86,95,105,125,194$
88	$1,4,5,6,10,12,13,16,33,40,41,46,53,54,65,102,121,125,162,210,294$
92	$2,4,7,10,32,64,79,119$
94	1,24,36,55,73,111,139,157,192,205
98	$1,2,4,5,8,22,30,34,45,61,90,126,129,154,292$
100	3,113,231

3. Remarks. Several pairs of twin primes were found by comparing Tables 1 and 2 . The largest ones are

$$
10 \cdot 3^{102} \pm 1, \quad 68 \cdot 3^{30} \pm 1, \quad 70 \cdot 3^{25} \pm 1, \quad 76 \cdot 3^{139} \pm 1, \quad 82 \cdot 3^{26} \pm 1, \quad 94 \cdot 3^{55} \pm 1
$$

The largest pair here, $76 \cdot 3^{139} \pm 1$, seems to be the largest pair of twin primes currently known.

Of the numbers analogous to the Cullen numbers, i.e., integers of the form $n 3^{n}+1$, only $2 \cdot 3^{2}+1,8 \cdot 3^{8}+1$ and $32 \cdot 3^{32}+1$ are primes for $n \leqq 100$. Unfortunately, $128 \cdot 3^{128}+1$ is composite.

Department of Computer Science
University of Manitoba
Winnipeg 19, Manitoba, Canada

1. H. Riesel, "Lucasian criteria for the primality of $N=h \cdot 2^{n}-1$," Math. Comp., v. 23, 1969, pp. 869-875. MR 41 \#6773.
2. R. M. Robinson, "A report on primes of the form $k \cdot 2^{n}+1$ and on factors of Fermat numbers," Proc. Amer. Math. Soc., v. 9, 1958, pp. 673-681. MR 20 \# 3097.
3. H. C. Williams \& C. R. Zarnke, "A report on prime numbers of the forms $M=$ $(6 a+1) 2^{2 m-1}-1$ and $M^{\prime}=(6 a-1) 2^{2 m}-1, "$ Math. Comp., v. 22, 1968, pp. 420-422. MR 37 \# 2680.
4. H. C. Williams, "The primality of $2 A 3^{n}-1$," Canad. Math. Bull., (To appear.)
5. H. C. Williams, "An algorithm for determining certain large primes," Proc. Second Louisiana Conference on Combinatorics, Graph Theory and Computing, Baton Rouge, 1971, pp. 533-556.
